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ABSTRACT ÖZ

Amaç: Günümüzde, sadece tıbbi görüntüleme ile kemik 
lezyonlarının kesin histopatolojik tanısını koymak mümkün 
olmamaktadır. Bu çalışmada, biyopsi gerektiren litik kemik 
lezyonlarının benign veya malign olduklarını belirleyebilmek 
için makine öğrenme (MÖ) tabanlı bilgisayarlı tomografi (BT) 
yapısal analizinin değerini ölçmeyi amaçladık.

Yöntemler: Bu retrospektif çalışmaya litik kemik lezyonu olan 
58 hasta dahil edilmiştir. Lezyon segmentasyonu bağımsız iki 
gözlemci tarafından gerçekleştirilmiştir. Toplamda, kontrastsız 
BT görüntülerinden 744 yapısal özellik çıkartılmıştır. Boyut 
küçültme, tekrarlanabilirlik analizi ve özellik seçimi ile 
yapılmıştır. Özellik seçimi, optimizasyon ve doğrulama, iç içe 
geçmiş çapraz doğrulama yaklaşımına sahip bir eğitim veri 
kümesi kullanılarak yapılmıştır. Geriye kalan görünmeyen 
veri seti üzerinde test yapılmıştır. Sınıflandırmalar, beş temel 
MÖ sınıflandırıcısı ve üç farklı oylama stratejisi kullanılarak 
yapılmıştır.

Bulgular: En iyi tahmin performansı, altı özelliğe sahip 
k-nearest neighbors algoritması ile elde edilmiştir. En iyi 
algoritma değerinin eğri altındaki alan, doğruluk, duyarlılık 
ve özgüllük değerleri doğrulama veri seti için sırasıyla; %0,774, 
%78,1, %78 ve %78,1; görünmeyen test veri seti için ise sırasıyla; 
%0,861, %82,4, %82,4 ve %81,5 idi.

Sonuç: MÖ tabanlı BT yapısal analizi, biyopsi gerektiren litik 
kemik lezyonlarının benign ve malign davranışlarını tahmin 
etmek için ümit verici, invazif olmayan bir teknik olabilir.

Anahtar Kelimeler: Kemik, yapısal analiz, radyomik, makine 
öğrenme, yapay zeka

Introduction: Currently, medical imaging has a limited capacity 
to achieve a final histopathological diagnosis of bone lesions. 
This study aimed to evaluate the use of machine learning (ML)-
based computed tomography (CT) texture analysis to determine 
benign and malignant behaviors of lytic bone lesions needing 
a biopsy.

Methods: This retrospective study included 58 patients with 
lytic bone lesions. Lesion segmentation was independently 
performed by two observers. After evaluating unenhanced 
CT images, a total of 744 texture features were obtained. 
Reproducibility analysis and feature selection were used 
for dimension reduction. A training data set with a nested 
cross-validation approach was used for feature selection, 
optimization, and validation. Testing was executed on the 
remaining unseen data set. Classifications were done using five 
base ML classifiers and three voting strategies.

Results: The best predictive performance was achieved using 
the k-nearest neighbors algorithm with six features. The area 
under the curve, accuracy, sensitivity, and specificity of the best 
algorithm were, respectively, 0.774%, 78.1%, 78%, and 78.1% 
for the validation data set; and 0.861, 82.4%, 82.4%, and 81.5% 
for the unseen test data set.

Conclusion: The ML-based CT texture analysis may be a 
promising non-invasive technique for determining benign and 
malignant behaviors of lytic bone lesions that need a biopsy.

Keywords: Bone, texture analysis, radiomics, machine 
learning, artificial intelligence
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Introduction
Texture analysis, which is a vital part of radiomics, is used to change 
standard medical images into high-dimensional quantitative data 
by calculating distribution and patterns of voxels or pixels (1,2). The 
literature has widely suggested that texture analysis might have a 

potential value in predicting certain underlying pathology or outcomes 

in different organs or systems (2). Contrary to standard qualitative 

evaluation, texture analysis may provide an objective, non-invasive 

assessment of the medical images, possibly leading to better decision-

making in patient management (2,3). Moreover, artificial intelligence 

offers robust and reliable tools that learn data patterns and then make 

predictions on unseen instances for better decision support to manage 

such high-dimensional quantitative data that the texture analysis 

supplies (2,4).

Imaging of bone lesions has heavily relied on radiographs for a long 
time (5). Nowadays, it comprises technologically more advanced 
armamentarium, including positron emission tomography (PET), 
ultrasound, magnetic resonance imaging (MRI), and computed 
tomography (CT) (5,6). From a diagnostic point of view, all of these 
imaging methods can contribute to tissue characterization by 
narrowing the range of differential diagnoses and then indicating the 
most appropriate course of action afterward (7). In other words, these 
approaches have a limited capacity to achieve a final histopathological 
diagnosis (6). In particular, CT can help determine the calcification 
pattern in the bone lesion matrix, identify occult destruction, or even 
localize the nidus of an osteoid osteoma (5,6). However, if we consider 
all possible lesion types that can be encountered in clinical practice, 
it has a limited capability in tissue characterization. Interestingly, 
unenhanced CT texture analysis is being used to evaluate many different 
pathologies located in various organs or systems with a promising 
predictive performance (8-11).

In our work, we assessed the future value of unenhanced CT texture 
analysis for foreseeing benign and malignant behaviors of lytic bone 
lesions that need biopsy in clinical practice using various state-of-the-art 
machine learning (ML) algorithms and strategies.

Methods

Ethics

All study procedures, including waiver of informed consent for medical 
records review, were approved by our institutional review board. 
The approval form the University of Health Sciences Turkey, İstanbul 
Training and Research Hospital Local Ethics Committee was obtained 
(approval number: 1965, date: 29.08.2019).

Patients

Biopsy-proven bone lesions examined between January 2016 and May 
2019 were obtained from our picture archiving and communication 
system. The exclusion criteria of patients were as follows: 1) mixed or 
sclerotic bone lesions, 2) unavailability of unenhanced CT in our archive, 
3) quality problems in CT study, and 4) indefinite border or small (≤5 
mm) lesions. No other criterion regarding the malignancy status of 

the patients was applied. A simplified flowchart for patient selection is 
presented in Figure 1.

Computed Tomography Protocol

CT scans were performed using different scanners as follows: a 128-slice 
multidetector CT (Ingenuity, Philips Healthcare, Cleveland, OH, USA), a 
64-slice multidetector CT (Aquilion, Canon Medical Systems, Otawara, 
Japan), and a 2-slice helical CT (HiSpeed, General Electric Company, 
Fairfield, CT, USA). Overall, the CT parameters were as follows: 1) tube 
voltage of 100-140 kV, 2) tube current of 97-500 mAs, 3) slice thickness of 
0.5-5 mm, 4) pixel size of 0.162-0.976 mm, and 5) no contrast medium 
administration.

Technical Workflow

To provide a basic understanding and a larger view to the reviewers, we 
summarized our technical workflow in a flowchart in Figure 2.

Preprocessing

To reduce inter-scanner differences, all CT images were normalized using 
the ±3 sigma technique that centers voxel gray-level values at the mean 
with the standard deviation (SD) (12). Normalization was established on 
the following expression:

f(x)=
s[x - μ(x)]

σ(x)

where f  (x)  is the normalized image gray-level value, x is the original 
gray-level value, μ (x) is the mean gray-level value, σ (x) is the SD of the 
image gray-level value, and s is the scaling factor, which was 100 in this 
study.

Resampling and rescaling of pixel spaces to an in-plane resolution of 
1x1 mm2 were performed because comparing texture characteristics 
necessitates identical spatial resolution (13).

We used a fixed bin-width to obtain an ideal bin count between 16 and 
128 for gray-level discretization (14,15). To obtain this, a preliminary 
extraction of first-order parameters was performed in all patients 
included in this work to calculate the gray-level range and optimal bin 

Figure 1. Patient selection flowchart

CT: Computed tomography
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width. The discretization was established on the following mathematical 

expression:

Xb,i = 
Xgl,i min(Xgl,i)

W W
+ 1

where X
b,i

 is the gray-level value after discretization, X
gl,i 

is the gray-level 

value before discretization, and W is the bin-width value, which was 2 

in this study.

Padding was applied with a distance value of 5 using original gray-level 

intensity.

Texture Analysis

By depicting a polygonal region of interest (ROI), the lytic bone lesions 

were segmented using the largest representative axial image slice of 

unenhanced CT. To minimize the partial volume effect from visually 

healthy structures, the ROI was carefully depicted, considering the clear 

lesion margin. The segmentation style is presented in Figure 3. Two 

observers segmented the lesions for a feature reproducibility analysis. 

The possible influence of the slice selection bias was considered since 

this might be a major concern of texture analysis, which is based on a 

single slice (16,17). Therefore, each observer was blind to the selected 

slices by the other observer.

PyRadiomics software program (PyRadiomics 2.0.1; Python 2.7.13; 

Numpy 1.13.1; SimpleITK 1.1.0; PyWavelet 0.5.2) was used for extracting 

texture features (18). Original, filtered, and wavelet-transformed images 

were used for extracting the features. Laplacian of Gaussian (LoG) filter 

was used for image filtrations with values of 2, 4, and 6 mm presenting 

with fine, medium, and coarse patterns, respectively. The following 

are the extracted texture features: 1) 18 first-order features, 2) 14 gray-

level dependence matrix features, 3) 24 gray-level co-occurrence matrix 

features, 4) 16 gray-level run-length matrix features. 5) 16 gray-level size 

zone matrix features, and 6) 5 neighboring gray-tone difference matrix 

features. These six groups of features were derived from one original, 

three LoG-filtered, and four wavelet-transformed images, which add up 

to 744 features per lesion in total. Detailed feature names and classes 

are presented in the Online Supplement. Comprehensive descriptions 

and mathematical expressions for these features can be found on the 

software program website and in the references (19-23).

Data Handling

The radiomic data underwent randomization, standardization, and 

stratified sampling.

The standardization of radiomic feature values was performed by 

centering and scaling the values by the mean and SD, respectively. Then, 

before data sampling, the order of data sets related to patient identifiers 

was randomized.

The whole data set was sampled to create training and unseen test data 

set splits, with proportions of 70% and 30%, respectively. The data split 

was created to prevent possible information leakage. Class balance in the 

training and unseen test data sets was ensured using stratified sampling, 

which sets the same class balance in the whole data set to the training 

and testing data sets. Training data set was used in classifier-specific 

feature selection, model development, optimization, and validation. 

The remaining data set, which is unseen by the feature selection and ML 

algorithms, was used for the unbiased testing of the model.

Figure 2. Technical study pipeline

2D: Two-dimensional, LoG: Laplacian of Gaussian

Figure 3. Lesion segmentation. (a) Unenhanced computed tomography 
image of a 51-year-old man with a giant cell tumor in the proximal tibia. 
(b) Lesion is segmented using the largest representative axial image slice 
with a particular focus on the contour
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Dimension Reduction

A feature reproducibility analysis was initially used, followed by a 

classifier-specific feature selection algorithm to reduce the dimension 

of the training data.

For the reproducibility analysis, the intra-class correlation coefficient 

(ICC) was calculated for each texture feature and a clinical variable 

(maximum tumor diameter) using a two-way model, single rating, and 

absolute agreement. In the following dimension reduction step, which is 

also called feature selection, only features with ICC ≥0.75 that indicated 

good and excellent inter-observer reproducibility were included.

Waikato Environment for Knowledge Analysis (WEKA) toolkit version 

3.8.2 was used for the feature selection (24). In the feature selection and 

model validation process, a nested cross-validation method with 5-fold 

inner and 10-fold outer loops was used. An incremental wrapper-based 

subset search method along with a wrapper attribute evaluator was 

used (25,26). The features were graded by their probabilistic significance, 

which was computed as a two-way function in the search method. The 

attributes undergoing more than one inner cross-validations were 

classified in the outer loop. Of note, age, gender, and maximal lesion 

diameter were also included in the feature selection as clinical variables 

besides the texture features.

Machine Learning-based Classifications

WEKA toolkit was used for ML-based classifications (24). The five base 

ML algorithms used were as follows: k-nearest neighbors, naive Bayes, 

random forest, support vector machine, and artificial neural network 

(27). In addition, these algorithms were also used in an ensemble 

learning technique called voting with three strategies (majority voting, 

average probability, and maximum probability) (28).

Considering the potential bias of the internal validation techniques, 

the performance evaluation was performed both in the training data 

as validation and in the unseen data as testing (29). The performance 

of the algorithms was mainly evaluated using the area under the 

receiver operating characteristic curve (AUC). Moreover, the accuracy, 

sensitivity, specificity, precision, F-measure, and Matthews correlation 

coefficient were also determined for further evaluation. For sensitivity 

and specificity, the weighted averages were also calculated.

Reference Standards for Classifications

The reference standards for the classifications were based on the 

official histopathological reports. Primary malignancies, secondary 

malignancies, and systemic malignancies were grouped as malignant 

lesions (30). Other lesions were grouped as benign lesions (30).

Conventional Statistical Analysis of Baseline Characteristics

Based on the value distribution, the parametric or non-parametric 

statistical tests were used to compare age and maximum lesion diameter 

between training and testing data sets. The chi-square test was used 

to compare the proportions of the gender. A p-value of less than 0.05 

indicated statistical significance.

Results

Baseline Characteristics

A total of 58 patients met our eligibility criteria. Of them, 41 and 17 
patients were randomly assigned to the training and test datasets, 
respectively. The following class distributions were in almost perfect 
balance using stratified sampling: 28 benign vs 30 malignant for the 
whole data, 20 benign vs 21 malignant for the training data, and 8 benign 
vs 9 malignant for the test data. There was no statistically significant 
difference in age (p=0.191), gender (p=0.488), and maximum lesion 
diameter (p=0.447) between the training and unseen test data sets. The 
baseline characteristics of the patients and their lesions are presented 
in Table 1.

Dimension Reduction

Inter-observer reproducibility was good or excellent in 464 of 744 
texture features (ICC: ≥0.75). Additionally, the inter-observer agreement 
for the maximum lesion diameter was excellent (ICC: 0.905). All the 
reproducible texture features (ICC: ≥0.75) and clinical variables (age, 
gender, and maximum lesion diameter) were contained in the following 
feature selection process based on an algorithm.

In total, 15 texture features and 1 clinical variable were selected (Figure 
4). Using the classifier-specific feature selection algorithm for each 
ML classifier to perform optimization, selected feature subsets were 
substantially different across the models created. Selected feature 
subsets are presented in Table 2. The selected feature numbers for 
each classifier ranged from 2 to 6. Considering all selected features, 
there was a predominance of the features extracted from the wavelet-
transformed images. Based on feature classes, first-order and gray-level 
co-occurrence matrix features outnumbered the others. The only clinical 
variable selected by the algorithms was the maximum lesion diameter, 
which was included in the feature subset of k-nearest neighbors (Figure 
5).

Machine Learning-based Training and Nested Cross-validation

Considering the five base ML classifiers, the AUC and accuracy metrics 
ranged from 0.724 to 0.774 and from 73.2% to 78.1%, respectively. 
The best performance was achieved by the k-nearest neighbors, 
with a weighted average sensitivity and specificity of 78% and 78.1%, 
respectively. Regarding the three voting strategies, the AUC and accuracy 
metrics ranged from 0.712 to 0.757 and from 75.6% to 82.9%, respectively. 
The majority voting achieved the best performance, with a weighted 
average sensitivity and specificity of 75.6% and 75.8%, respectively. 
Nested cross-validation performance metrics of the ML algorithms on 
the training data set are presented in Table 3.

Machine Learning-based Unseen Testing

Considering the five base ML classifiers, the AUC and accuracy metrics 
ranged from 0.715 to 0.861 and from 70.6% to 82.4%, respectively. The 
k-nearest neighbors achieved the best performance, with a weighted 
average sensitivity and specificity of 82.4% and 81.5%, respectively. 
Regarding the three voting strategies, the AUC and accuracy ranges were 
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Figure 4. Heatmap and unsupervised clustering of the texture features 
selected for all machine learning algorithms

TexF1: Strength in wavelet image (high-low), TexF2: informational measure of 
correlation-2 in wavelet image (low-low), TexF3: entropy in wavelet image (low-
low), TexF4: difference entropy in wavelet image (low-low), TexF5: size zone 
nonuniformity in original image, TexF6: inverse difference normalized in wavelet 
image (low-low), TexF7: dependence variance in original image, TexF8: large 
dependence emphasis in original image, TexF9: inverse variance in wavelet image 
(low-high), TexF10: maximum probability in wavelet image (low-low), TexF11: joint 
energy in wavelet image (low-low), TexF12: uniformity in wavelet image (low-low), 
TexF13: gray-level nonuniformity normalized in wavelet image (low-low), TexF14: 
gray-level nonuniformity normalized in original image, TexF15: large dependence 
low gray-level emphasis in Laplacian of Gaussian-filtered image with 4 mm lesion 
diameter, maximum lesion diameter

Table 1. Baseline characteristics of 58 study patients

Characteristics Whole data (n=58) Training and validation data (n=41) Unseen test data (n=17)

Age (years) 56.6 54.9 60.8

Gender, n (%)

Female 21 (36.2) 16 (39) 5 (29.4)

Male 37 (63.8) 25 (61) 12 (70.6)

Mean lesion diameter (mm)* 31.1 28.9 36.6

Benign lesions, n (%) 28 (48.3) 20 (48.8) 8 (47.1)

Neoplastic 3 (5.2) 3 (7.3) 0 (0.0)

Non-neoplastic 25 (43.1) 17 (41.5) 8 (47.1)

Malign lesions, n (%) 30 (51.7) 21 (51.2) 9 (52.9)

Metastasis 17 (29.3) 12 (23.3) 5 (29.4)

Plasma cell malignancy 8 (13.8) 5 (12.2) 3 (17.6)

Other malignant lesions 5 (8.6) 4 (9.7) 1 (5.9)

Lesion location, n (%)

Acetabulum 2 (3.4) 2 (4.9) 0 (0.0)

Femur 6 (10.3) 3 (7.3) 3 (17.6)

Fibula 1 (1.7) 1 (2.4) 0 (0.0)

Humerus 4 (6.9) 3 (7.3) 1 (5.9)

Iliac 8 (13.8) 6 (14.6) 2 (11.8)

Ischium 2 (3.4) 1 (2.4) 1 (5.9)

Calcaneus 1 (1.7) 1 (2.4) 0 (0.0)

Rib 2 (3.4) 1 (2.4) 1 (5.9)

Mandibula 1 (1.7) 1 (2.4) 0 (0.0)

Pubis 1 (1.7) 0 (0.0) 1 (5.9)

Radius 1 (1.7) 1 (2.4) 0 (0.0)

Sacrum 7 (12.1) 5 (12.2) 2 (11.8)

Scapula 2 (3.4) 2 (4.9) 0 (0.0)

Sternum 1 (1.7) 1 (2.4) 0 (0.0)

Tibia 4 (6.9) 1 (2.4) 3 (17.6)

Vertebra 15 (25.9) 12 (29.3) 3 (17.6)

*Based on the three-dimensional maximum lesion diameter. Unless otherwise stated, data represent number of patients or lesions

Figure 5. Two-dimensional projection of the selected features for the best 
machine learning algorithm (k-nearest neighbors)

A: Strength in wavelet image (high-low), B: informational measure of correlation-2 
in wavelet image (low-low), C: joint energy in wavelet image (low-low), D: maximum 
lesion diameter, E: gray-level nonuniformity normalized in wavelet image (low-low), 
F: uniformity in wavelet image (low-low)
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0.708 to 0.806 and 70.6% to 76.5%, respectively. Voting strategy based on 

maximum probability achieved the best performance, with a weighted 

average sensitivity and specificity of 75.6% and 75.8%, respectively. 

Performance metrics of the ML algorithms on the testing data set are 

presented in Table 4.

Discussion

Study Overview

We assessed the future predictive value of the ML-based CT texture 

analysis to distinguish benign and malignant behaviors of lytic bone 

lesions that need a biopsy procedure in clinical practice. We created 

models using five base ML classifiers and three different voting 

strategies. The predictive performance of the models was evaluated 

using two approaches: 1) training along with a nested cross-validation 

approach and 2) testing on an unseen data set (or a random holdout). 

For each base classifier and voting strategy, a different feature subset 

was selected. The k-nearest neighbors achieved the best predictive 

performance. Using this base ML algorithm, more than 80% of the 

patients were sorted rightly. The voting strategy yielded no improvement 

in the predictive performance.

Practical Implications

Differential diagnosis of benign lytic bone lesions usually includes 

fibrous dysplasia, eosinophilic granuloma, enchondroma, giant cell 

tumor, non-ossifying fibroma, osteoblastoma, aneurysmal bone cyst, 

solitary bone cyst, chondroblastoma, brown tumor, and infection-

related pathologies (30). On the other hand, the differential diagnosis 

for the malignant lytic lesion category is a little shorter and mainly 

includes metastasis, myeloma, rare osteosarcoma, and chondrosarcoma 

(30). Also, Ewing’s sarcoma and leukemia should be considered in the 

pediatric age group.  Conventionally, differentiation of these lesions 

is made by age, lesion localization, and qualitative imaging features 

such as periosteal reaction, cortical destruction, lesion margins, matrix 

pattern, and transition zone (30). However, these features may overlap 

between benign and malignant lesions, leading to diagnostic confusion 

Table 2. Selected feature subsets for each machine learning algorithm

Algorithm Selected features (feature class and image type) ICC

k-Nearest neighbors

Uniformity (first-order, wavelet-LL) 0.835

Gray-level nonuniformity normalized (GLRLM, wavelet-LL) 0.819

Joint energy (GLCM, wavelet-LL) 0.897

Maximum tumor diameter 0.905

Informational measure of correlation 2 (GLCM, wavelet-LL) 0.808

Strength (NGTDM, wavelet-HL) 0.908

Naive Bayes
Uniformity (first-order, wavelet-LL) 0.835

Large dependence low gray-level emphasis (GLDM, LoG-4 mm) 0.887

Support vector machine
Uniformity (first-order, wavelet-LL) 0.835

Maximum probability (GLCM, wavelet-LL) 0.849

Random forest

Uniformity (first-order, wavelet-LL) 0.835

Difference entropy (GLCM, wavelet-LL) 0.849

Joint energy (GLCM, wavelet-LL) 0.897

Inverse difference normalized (GLCM, wavelet-LL) 0.760

Artificial neural network

Uniformity (first-order, wavelet-LL) 0.835

Gray-level non-uniformity normalized (GLRLM, wavelet-LL) 0.819

Entropy (first-order, wavelet-LL) 0.796

Dependence variance (GLDM, original) 0.819

Large dependence emphasis (GLDM, original) 0.826

Inverse variance (GLCM, wavelet-LH) 0.772

Voting-majority voting

Uniformity (first-order, wavelet-LL) 0.835

Gray-level non-uniformity normalized (GLRLM, wavelet-LL) 0.819

Size zone non-uniformity (GLSZM, original) 0.908

Voting-average probability
Uniformity (first-order, wavelet-LL) 0.835

Joint energy (GLCM, wavelet-LL) 0.897

Voting-maximum probability
Uniformity (first-order, wavelet-LL) 0.835

Gray-level non-uniformity normalized (GLRLM, original) 0.861

ICC: Intra-class correlation coefficient, GLRLM: gray-level run-length matrix, GLCM: gray-level co-occurrence matrix, NGTDM: neighboring gray-tone difference matrix, GLDM: gray-level 
dependence matrix, GLSZM: gray-level size zone matrix, LoG: Laplacian of Gaussian, LL: low-low, HL: high-low, LH: low-high
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(30). Some conditions called tumor mimickers may even make the 
diagnosis much more challenging (31). While evaluating such conditions, 
unnecessary diagnostic work-up, including invasive procedures, might 

be related to patient morbidity, discomfort, and high economic cost. 
Therefore, differentiating benign lesions from malignant ones by non-
invasive methods is necessary.

Table 3. Nested cross-validation in training data

Algorithm Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-Measure MCC AUC
Confusion matrix*

B M R

k-Nearest 
neighbors

78.1
80.0

76.2

76.2

80.0

76.2

80.0

0.780

0.780
0.562 0.774

16 4 Benign

5 16 Malign

Naive Bayes 75.6
90.0

61.9

61.9

90.0

69.2

86.7

0.783

0.722
0.539 0.757

18 2 Benign

8 13 Malign

Support vector 
machine

75.6
95.0

57.1

57.1

95.0

67.9

92.3

0.792

0.706
0.560 0.761

19 1 Benign

9 12 Malign

Random 
forest

75.6
75.0

76.2

76.2

75.0

75.0

76.2

0.750

0.762
0.512 0.742

15 5 Benign

5 16 Malign

Artificial 
neural 
network

73.2
80.0

66.7

66.7

80.0

69.6

77.8

0.744

0.718
0.470 0.724

16 4 Benign

7 14 Malign

Voting-
majority 
voting

75.6
80.0

71.4

71.4

80.0

72.7

78.9

0.762

0.750
0.516 0.757

16 4 Benign

6 15 Malign

Voting-
average 
probability

82.9
95.0

71.4

71.4

95.0

76.0

93.8

0.844

0.811
0.681 0.719

19 1 Benign

6 15 Malign

Voting-
maximum 
probability

78.0
90.0

66.7

66.7

90.0

72.0

87.5

0.800

0.757
0.581 0.712

18 2 Benign

7 14 Malign

*B and M indicate classification results. Benign and malign indicate reference standards.

MCC: Matthews correlation coefficient, AUC: area under the curve, B: benign, M: malign

Table 4. Testing on the remaining unseen data

Algorithm Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Precision 
(%) F-Measure MCC AUC

Confusion matrix*

B M R

k-Nearest neighbors 82.4
75.0

88.9

88.9

75.0

85.7

80.0

0.800

0.842
0.648 0.861

6 2 Benign

1 8 Malign

Naive Bayes 82.4
87.5

77.8

77.8

87.5

77.8

87.5

0.824

0.824
0.653 0.806

7 1 Benign

2 7 Malign

Support vector 
machine

70.6
87.5

55.6

55.6

87.5

63.6

83.3

0.737

0.667
0.450 0.715

7 1 Benign

4 5 Malign

Random forest 76.5
75.0

77.8

77.8

75.0

75.0

77.8

0.750

0.778
0.528 0.792

6 2 Benign

2 7 Malign

Artificial neural 
network

82.4
87.5

77.8

77.8

87.5

77.8

87.5

0.824

0.824
0.653 0.792

7 1 Benign

2 7 Malign

Voting-majority 
voting

70.6
75.0

66.7

66.7

75.0

66.7

75.0

0.706

0.706
0.417 0.708

6 2 Benign

3 6 Malign

Voting-average 
probability

70.6
87.5

55.6

55.6

87.5

63.6

83.3

0.737

0.667
0.450 0.778

7 1 Benign

4 5 Malign

Voting-maximum 
probability

76.5
87.5

66.7

66.7

87.5

70.0

85.7

0.778

0.750
0.549 0.806

7 1 Benign

3 6 Malign

*B and M indicate classification results. Benign and Malign indicate reference standard.

MCC: Matthews correlation coefficient, AUC: area under the curve, B: benign, M: malign
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It may seem that the technique proposed might have low clinical 
applicability since the biopsy would be performed on all such lesions. 
In other words, even if the clinicians were about 80% sure that a lesion 
was benign; one would still likely perform a biopsy.  However, this 
investigation should be considered a preliminary work, with its many 
obvious limitations. We think there is more room for improvement of 
this technique to make it more useful in clinical practice.

Previous Works

Most of the radiomic studies about lytic bone lesions evaluated the 
performance of computer-aided or automatic lesion detection systems, 
with a particular focus on spinal bone lesions (32-36). Meanwhile, other 
papers worked on lesion classification problems using texture analysis. 
Larhmam et al. (37) worked on spinal metastasis classification using 
conventional MRI images and achieved an accuracy of 90.1%. Reischauer 
et al. (38) published a prospective study in patients with prostate cancer 
along with bone metastasis by investigating the potential value of 
texture features extracted from apparent diffusion coefficient maps in 
treatment response assessment (38). Acar et al. (39) worked on ML-based 
CT texture analysis to distinguish metastatic and completely responded 
sclerotic bone lesions in patients with prostate cancer (39). In our study, 
rather than lesion detection, we focused on the lesion classification with 
a different perspective, i.e., distinguishing benign and malignant lesions 
that need a biopsy in clinical practice. Furthermore, we included spinal 
lesions and ones from different locations.

Study Limitations

There are a few limitations to the generalizability of our results. First, 
the main limitations were the retrospective nature of the study and 
the relatively small number of patients. Second, lesions from different 
locations were included in this work. It would be worth looking at 
specific locations such as the spine or pelvic bones. Nonetheless, the 
major constraint for this was the limited number of patients considering 
major locations. Third, we only used unenhanced CT with a rather 
heterogeneous protocol in this preliminary work. The imaging protocol 
heterogeneity was due to the usage of different scanners, which may 
represent the clinical practice and improve the generalizability of the 
findings. The patients’ other imaging studies, such as PET-CT and MRI, 
were also heterogeneous, and some had been performed in different 
centers. Because of these, we were unable to use other techniques for 
texture analysis. On the other hand, other imaging methods including 
MRI and PET-CT/MRI should be evaluated in future works. Fourth, we 
used a single-slice two-dimensional manual segmentation. Although a 
few slice-based or three-dimensional volumetric segmentation would 
be much more illustrative for the lesion texture, it is too difficult to use 
in clinical practice unless it is performed with automated methods. The 
major problem of the two-dimensional texture analysis in such large 
lesions is the slice selection bias, which was considered in this work 
(16,17). Fifth, although we performed separate testing on the unseen 
data set or a holdout data set, there was no external data set. On the 
other hand, we plan to perform independent external validation when 
appropriate data are available. Sixth, we only conducted quantitative 
analysis on the lesions that we performed a biopsy procedure. Because 
some of the patients were referred to our hospital for the biopsy 

procedure, not all the imaging data were available to conduct a proper 
qualitative analysis for comparison.

Conclusion
This preliminary work suggests that the ML-based CT texture analysis 
may be a promising non-invasive technique to distinguish benign 
and malignant behaviors of lytic bone lesions that need a biopsy. By 
improving the above mentioned limitations of this work, future research 
may have the potential to increase the predictive performance of this 
method. We hope this comprehensive work will provide a base for 
future research.
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